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Determination of the Solutions of the Navier-Stokes 
Equations By a Set of Nodal Values 

By Ciprian Foias and Roger Temam 

Abstract. We consider the Navier-Stokes equations of a viscous incompressible fluid, and we 
want to see to what extent these solutions can be determined by a discrete set of nodal values 
of these solutions. The results presented here are exact results and not approximate ones: we 
show, in several cases, that the solutions are entirely determined by their values on a discrete 
set, provided this set contains enough points and these points are sufficiently densely 
distributed (in a sense described in the article). Two typical results are the following ones: two 
stationary solutions coincide if they coincide on a set sufficiently dense but finite; similarly if 
the large time behavior of the solutions to the Navier-Stokes equations is known on an 
appropriate discrete set, then the large time behavior of the solution itself is totally de- 
termined. 

1. Introduction. In this paper we are interested in some questions related to the 
determination of the "large time" behavior of a fluid. This question arises naturally 
in the computation of nonlaminar flows; a flow is nonlaminar in many usual 
situations, as this happens when the viscosity is small (for given forces) or when the 
driving forces are sufficiently strong (for a given fluid). For such flows it is well- 
known that, even if the driving forces are independent of time, the flow which 
actually occurs is time-dependent. After a transient period some "permanent 
regime" takes place and the understanding of this regime is directly related to a 
better understanding of the behavior for t - oo of the corresponding solution of the 
Navier-Stokes equations (N.S.E), and of the functional invariant set (attractor) 
which represents it. Some theoretical aspects of this problem have been investigated 
elsewhere by the authors (alone or in collaboration with others, see for instance 
references [3] to [6] and [13]) and a very short description of some relevant results is 
given in subsection 3.2 below.* 

From the computational point of view the determination of the permanent regime 
of a nonlaminar flow is certainly not at hand but, however, with the improvement of 
the computational power of the computers, the preliminary approaches to this 
question are not out of sight. At our present level of understanding of the question it 
will be necessary to integrate the N.S.E. on a large interval of time and then average 
the solution in some sense. The question which we address here is a very preliminary 
and very basic one in this direction. Namely, if we know the behavior of the velocity 
vectors u(x, t) for all time (or for large times), on a set of points &, what information 
can we deduce for the large time behavior of the flow. The answer that we obtain is 
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very precise, and is rigorous: if the set of points & is sufficiently dense (but still 
finite), then the large time behavior of the flow is uniquely determined by the 
knowledge of u(x, t), for all x E & and for all time (or for all t sufficiently large). 
For instance if u(x, t) tends to some limit (x as t -soo, Vx E &, then the solution 
u(., t) of the N.S.E. tends to a unique stationary solution u.(.), such that u.(x) = 
(x, Vx E &. Similarly, if u(x, t) tends to some time-periodic function px(t) as t -* oo 
(pX(t + T) = px(t)), Vx E &, then u(., t) tends as well to a time-periodic solution 
p of the N.S.E., which is such that p(x, t + T) = p(x, t) Vx and p(x, t) = px(t), 

Vx e &. 

These results are probably too precise ones for practical computations as it is 
likely that, in many cases, the number of points that & must contain (and which will 
be estimated elsewhere) is very large. However it is our feeling (or at least our hope) 
that beside these results, which assert that the large time behavior of a flow is 
entirely and exactly determined by the value of the velocity vector at a very large 
number of points, there is room for results allowing for the determination of such a 
flow up to some reasonable accuracy, given the value of the velocity vector on a less 
rich set of points. This is an open question in computational mathematics which is 
raised by his work. 

The rest of the introduction contains the notations and a short review of known 
results. 

1.1. The Navier-Stokes Equations. Let ?2 be an open bounded set of RI with a 
sufficiently smooth boundary F; the space dimension n will be equal to 2 or 3. If we 
assume that the domain Q is filled with a viscous incompressible fluid, then the 
motion of the fluid is governed by the Navier-Stokes equations (N.S.E.), 

(1.1) aat- PAu +(u. V)u + Vp =f, 

(1.2) V u=O in?2x(0,T). 

Here (0, T) is the interval of time during which the flow is studied, u = (u,,.. ., uj) 
is the velocity vector, p is the pressure (u, p are unknown), f represents given 
volumic forces, and v > 0 given is the kinematic viscosity. 

If, for instance, the boundary F is materialized and is at rest, then the velocity 
vector satisfies the nonslip boundary condition 

(1.3) u=O onFX(O,T). 

These equations, supplemented with the equation of distribution of velocity at 
t = O, 

(1.4) u = uo(given), att = 0, 

constitute an initial value problem for the Navier-Stokes equations. 
The problem of stationary solutions for the Navier-Stokes equations is the 

research of solutions of (1.1), (1.2), (1.3) which are time-independent, u(x, t) = u(x), 
p(x, t) = p(x), Vt, in which case (1.1) becomes more simply 

(1.1') -vAu+(u. V)u+ vp=f in?2, 

the forcesf also being time-independent, f(x, t) f(x), Vt. 
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Sometimes it is interesting to consider a situation which has less physical meaning 
but is slightly simpler from the mathematical point of view: this situation is that in 
which &2 = Q = (0, L)n is a cube in RW, and the boundary condition (1.3) is replaced 
by the space periodicity, i.e. for instance, when n = 2, 

(1.5) fu(x,, L, t) =u (x1,0, t) Vx1,0 < x1 < L, 
lU(0,X2, t) =u(L,X2, t) VX2,0 < X2<L 

1.2. Nodal Values. We are given a set of points in i2, xl,.. . ,xI. These points can 
be, for example, the nodal points for a finite element method or a collocation 
method for the Navier-Stokes equations; we denote by &N this set of points 

(1.6) dN = {X ,...X }. 

We want to "measure" the density of this set in S. For that purpose we associate to 
every point x of 2 its distance to &N, i.e. the distance of x to the closest point in 9N: 

(1.7) dN(x) = mi Ix - x'I, 
1 <j N 

and we set 

(1.8) dN = maxdN(x). 

The supremum is finite (and attained in 2), the function dN(x) being obviously 
continuous. Saying that dN < e (e > 0 fixed) amounts to saying that, for every point 
x of t2, there exists at least one point of gN in the ball centered at x and of radius e. 
Hence dN gives an indication of the density of the set &N in 2. The values of dN can 
be quite different for two sets &N, 6N with the same number of points if, for instance, 
the points are uniformly distributed in one case and cluster in a small subregion of ?2 
in the other case. 

1.3. Description of the Results. Given such a set JN, we are interested to see to what 
extent, and under what conditions on gN, the values of the velocity vector at the 
points ,x EG N characterize the flow: the two cases studied here are the case of 
stationary solutions and the problem of large time behavior of the solutions to the 
evolution equations. 

Section 2 is devoted to stationary solutions. Since the problem (1.1'), (1.2), (1.3) 
(or (1.1'), (1.2), (1.5)) is nonlinear, this problem may possess several solutions. We 
show that if two such solutions u, v coincide on the set &N and if dN is sufficiently 
small, then they are equal. Another result is the following one: let u(x, t) be the 
solution of (1.1)-(1.4) (or (1.1), (1.2), (1.4), (1.5)), and assume that dN is sufficiently 
small and that, for every xi E &N, u(xi, t) converges to some limit {i as t -3 , 

(1.9) u(x', t) -* { as t -* oo,j = 1,... ,N. 

Then there exists a unique stationary solution u.0 to the Navier-Stokes equations 
such that uO,(xi) = (J and, as t -oo, 

(1.10) u(, t) u00( ) 
for different norms, including the norm of uniform convergence. 

Section 3 concerns the behavior for t - oo of the solutions of the evolution 
problem in a more general context: we show essentially that if dN is sufficiently 
small, then the behavior of u(x, t) as t -* oo is entirely determined by the behavior 
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of u(x', t), j = 1,...,N. More precisely, if u and v are two solutions of (1.1)-(1.4) 
((1.3) perhaps replaced by (1.5)) and if 

(1.11) U(Xi, t) - v(xj, t) - 0 as t -s,j = 1,.oo,j 

then 

(1.12) u(, t) - v(, t) -O as t so, 

for different norms, including the uniform convergence one. These results can be 
compared with other results in C. Foias and G. Prodi [4], C., Foias and R. Temam [6], 
C. Foias, 0. Manley, R. Temam and Y.Treve [3], where it is shown that the behavior as 
t -+ oo of the solution is entirely determined by its projection on the space spanned 
by the first m eigenfunctions of the linear Stokes equations if m is sufficiently large; 
the corresponding modes are called in [3] the determining modes. 

Section 3 also gives some indications on the physical motivation for the study of 
the behavior of the solutions to the Navier-Stokes equations as t -s o. Finally 
Section 4 contains results of a similar nature for the time-periodic solutions. 

1.4. Functional Setting of the Navier-Stokes Equations. We end this introduction by 
recalling briefly the functional setting of the Navier-Stokes equations and some of 
the well-known results on their mathematical theory; for more details the reader is 
referred to 0. A. Ladyzhenskaya [10], J. L. Lions [11], R. Temam [13] or [14]. 

Let L2(a2) denote the space of square-integrable functions on 2, which is a Hilbert 
space for the scalar product and the norm 

(u, v) = f u(x)v(x) dx, lul = (fIu(x)12 dx). 

We denote by L2(i2)n the space of L2 vector functions on 2, and we use the same 
notation (., .), I * 1, for the scalar product and the norm in L2(i2)n. We consider the 
following subspace of L2(i2)n (cf. [13]): 

(1.13) H = {u E L2(2)n,divu = 0, u * v = 0onF}, 

where v = (vP ... , vn) is the unit outward normal on F; H is a Hilbert space. We 
consider also 

(1.14) V= {u E Hol() n divu = O}, 

(1.15) D(A)= {u E (Hol(2) n H2(2)),div u = , 

where Hm( (2) is the Sobolev space of order m (cf. R. A. Adams [1], J. L. Lions and 
E. Magenes [12]) and Hol(2) is the subspace of H1(i2) consisting of the functions 
which vanish on F. 

The weak formulation of problem (1.1)-(1.4) is (cf. [13]): 
Given uo E H and f E L2(0, T; H), find u E L2(0, T; V) n LI(O, T; H), such 

that 

(1.16) d (u(t), v) + v((u(t), v)) + ((u(t) u V)u(t), v) = (f(t), v) Vv E V, 

(1.17) u(0) = uO, 
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where we have written 

( au av n au ?aVjd uvV 
=1U () 

= 
x -x E =1 

1 
x x dx Vu, v E V, 

j= .x 
ai i'= ax1 ax1 

and Ilull = {((u, u))}1/2; ((u, v)) and Ilull are the usual scalar product and norm of 
Ho'(Q) . 

The problem of stationary solutions is as follows: 
Givenff E H, find u E V, such that 

(1.18) v((u, v)) +((u * v)u, v) = (f, v) Vv E H. 

In the case of strong solutions (the only case which we will consider), the 
equations (1.16) and (1.18) can alternatively be written as follows: 

(1.19) u E L2(O, T; D(A)), U' = du E L2(0, T; H), 

du(t) + vAu(t) + Bu(t) = f(t) 
dt 

for (1.16), and 

(1.20) u E D(A), vAu + Bu=f 

for (1.18). Here A is a linear operator from D(A) into H, defined by 

(1.21) Au = -PAu, Vu ED(A), 

P denoting the orthogonal projection in L2(S2)n onto H; B is a bilinear continuous 
operator from D(A) x D(A) into H, 

(1.22) B(u, v) = P((u - V)v), 

and we write Bu = B(u, u). 
Further properties will be recalled when needed. The case of the boundary 

condition (1.5) is formulated in the same manner, provided we modify accordingly 
the definition of H, V, D(A), A, B; see [14] for the details. 

We recall that the problem (1.16), (1.17) always has a solution (weak solution to 
the N.S.E.); the existence of a unique solution to (1.19) (strong solution to the 
N.S.E.) is known only when the space dimension is n = 2. The stationary problem 
(1.20) always has a solution; this solution is unique if the ratio If I/p2 is sufficiently 
small, i.e. is less than a constant which depends only on S2; see [10], [11], [13] for the 
proofs and further details. 

2. Stationary Solutions. As we just mentioned, if the ratio If l!/2 is smaller than 
some constant that depends only on 2, then there exists a unique stationary solution 
to the Navier-Stokes equation (1.20) (f given in H, see for instance [13]). When this 
ratio is larger, Eq. (1.20) may have several solutions. Our first result concerning the 
stationary solutions shows that, when nonuniqueness occurs, the stationary solutions 
depend only on a finite number of parameters. 

THEOREM 2.1. Let u and v be two stationary solutions of the N. S. E. 

(2.1) vAu + Bu =f, 

(2.2) vAv + Bv =f 
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such that 

(2.3) u(x') = v(x'), j = 1,... ,N. 

Then if dN is smaller than a constant a1 which depends only on If 1, v and 0, 

(2.4) dN <. al(If I, v, Q2), 

the solutions are equal 

(2.5) u = v. 

The proof follows Lemmas 2.1 and 2.2. 

LEMMA 2.1. For every w in D(A) we have 

(2.6) Suplw(x)l < 'q(w) + cld1/2lAwl, 
xeS2 

where c1 and C2, and more generally the cj's, denote positive constants and 

(2.7) ii(w) = Max lw(xj)I. 
1 <j N 

For the L2-norms of w and V w we also have 

(2.8) IWI < C2q(W) + c3d1/2lAwl, 

(2.9) lIwlI < c44q(w)d -1/4 + c5d1/4ilAwl. 

Proof. We know that for n < 3, the Sobolev space H2(Q2) is continuously 
imbedded in the space (1/2(0) of functions which are Holder continuous on U with 
exponent 172 (see [1], [12]). Now D(A) is a subspace of H2(?2)1, and we know (see 
[13]) that lAul is a norm on D(A) which is equivalent to the norm of H2(a2)'. Hence 
there exists a constant c which only depends on ?2 and such that 

(2.10) lw(x) -w(y) clx - yl/2lAwl Vx,y E ?2, Vw E D(A). 

For every x E ?2, there exists xI E N such that Ix - xJI t dN and therefore 

Iw(x)I I Iw(xj)I + CIx - xjI12lAwl; 

(2.6) follows. In order to obtain (2.8) we just write 

Iw(x)12 < 2'qBw2 + 2c dNIAwI 

and, by integration on ?2, (2.8) is proved. 
For (2.9) we use an interpolation inequality (cf. for instance [12]): 

(2.11) kPIH'(Q) H c(?2)I)I?()IpI14?() Vp E 

and thus, with another constant c, 

(2.12) lw C(Q.)IW1112 Aw11/2 V w E= D (A). 
Together with (2.8) this inequality implies (2.9). 0 

We recall some inequalities concerning the nonlinear term B; other inequalities 
will be recalled when needed: 

LEMMA 2.2. For every qp, 4 E D(A) 

(2.13) IB( W . a1v) I < c. 6 lA?If 11A11I 
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Proof. We start from the definition (1.22) of B, and we recall the fact that P is a 
projection in L2(S2)n: 

(2.14) IB(q, 4) I = IP(( v ) ) +) I (< I( * V) )I. 
To obtain the first inequality (2.13) we write 

1(? V)41 {SuPI(x)I}Iv4I = {SupI(x)I}11411. 

As we already recalled in Lemma 2.1, H2(S2) C W'(K2); therefore D(A) c (SI2)n and 
there exists a constant c' which depends only on S2 such that 

(2.15) kPIr'(5)n <. c'IAqpI Vp E D(A); 

the first inequality (2.13) follows. For the second one we write, using Holder's 
inequality, 

I(m v)4 < E (fIi(x)6 dx)(f 6? a (x) dx) 

Since H1(i2) is continuously imbedded in L6(s2) [1], [12], this last expression is 
bounded by c"(Q)IlpII IA4l, and the desired inequality is proved. 0 

We now give the 
Proof of Theorem 2.1. The difference w = u - v satisfies the equation 

vAw + B(u, w) + B(w, v) = 0. 

Hence, for the L2-norms 

vlAwl < IB(u, w)I + IB(w, v)I < (by (2.13)) < c6(IAul + IAvl)llwll. 
Now we use (2.9) with q(w) = 0 since w(xJ) = u(xJ) - v(x') = 0,j = 1,...,N. We 
obtain 

(- c5c6dd/4)(IAul + IAvI)IAwI < 0. 

If we know that 

(2.16) v > c5c6d)/4(IAul + IAvl), 
then we can conclude from (2.16) that Aw = 0, u = v. An a priori bound of lAul 
(and lAvl) in terms of If 1, v and t2, is given in [14] (cf. (10.17), Section 10): 

(2.17) Isu A u I f l. + Cs3 If 13~ 

where the ci, c,', denote various constants as usual. Thus a sufficient condition for 
(2.16) is 

dN <(2cC V (2 f I + 
s5)012 If 13I 

and the theorem is proved. 0 
We have recalled that if the ratio If I/p2 is less than some constant which depends 

only on S2, then there exists a unique stationary solution to the N.S.E. It is also 
shown in [14] that, in this case, the solution to the time-dependent problem tends, as 
t - oo, to the unique stationary solution. The next result shows that this conclusion 
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can be deduced from discrete observations. We restrict ourselves to the two-dimen- 
sional N.S.E. since this is the only case where the existence of strong solutions (i.e. 
solutions of (1.19)) has been proved; see however Remark 2.1. 

It is known that, when n = 2, the solution u(') of (1.19) is defined for all t > 0, 
[10], [11], [13]. Furthermore (cf. [4], [7]), for f given in L?(0, oo; H), the solution u 
remains bounded uniformly for t > 0 in the Hi-norm, 

(2.18) SupIIu(t)II < a2(IfIL-(o, ;H) P -1, Q)5 

and remains uniformly bounded for t > e in the H2-norm, for any e > 0, 

(2.19) SupjAu(t)j < a3( If Loo(O,;H), 5 9 2, E) 
t>E 

where the functions a2 and a3 are increasing with respect to their first two 
arguments. 

We assume that f is given in L'(0, oc; H), and that 

(2.20) f (t) -fc2f in Has t -oo, 

where f. belongs to H. We have: 

THEOREM 2.2. We assume that n = 2, that f is given satisfying (2.20), and we denote 
by u the solution of (1.19) for t > 0 (i.e. T = + oo). 

We assume also that we are given a set 8N such that 

(2.21) dN < a4, 

a4 some constant depending only on v, S, and the norm of f in L??(0, xc; H) and 
furthermore that, for everyj = 1, ... , N, 

(2.22) u(xi, t) ( jas t x- o, 

(i a vector in Rn. 
Then there exists a unique solution uo, to (1.20) with f replaced by f. (i.e. a 

stationary solution to the N.S.E.) which satisfies u.(xi) = (', j = 1,... , N, and, as 
t -- cc, u(t) converges to u., in the H'-norm and the uniform convergence norm. 

Proof. (i) The first step of the proof is the derivation of an energy-type inequality. 
We consider two times t, t', 0 < t < t'; we write t' = t + s, and we set v(t) = 

u(t + s), g(t) = f(t + s). We can then write the equation 

(2.23) dv (t) + iAv(t) + Bv(t) = g(t), 
dt 

which is nothing else than (1.19) at time t' = t + s. We set w = u - v and by 
subtracting (2.23) from (1.19) we obtain 

(2.24) ~dw 
(2.24) dt + vAw + B(u,w) +B(w,v) =f -g, 

the variable t being now omitted. We take the scalar product of (2.24) with Aw; since 

(2.25) (Aq, 4A) = ((Dp, 4)) V, E (A) 
we have 

( dw d d 2 
,Awi =--IIwII2 

dt' / dt 
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and thus 

I d IIwI12 + vlAwI2 = -(B(u,w), Aw) -(B(w, v), Aw) +(f- g, Aw). 

By the Schwarz inequality, 

j( f-g), Aw)j < If- gl Awl K If + 8vjAw12, 

where 8 > 0 is arbitrary for the moment. The inequalities (2.13) allow us to write 

I(B(u, w), Aw) I < IB(u, w)l I Awl < C6IAuI liwil lAwl 

and, similarly, 

I(B(w, v), Aw) I < C6IAvI liwil lAwl. 

We take into account (2.19), and we observe that the same bound is valid for 
v(t) = u(t + s), s > 0. Therefore 

(2.24) 2 dilwll2 + v(l - )Aw 2 if- g4 + 2c6a3j1Wjj IAWI. 

We apply (2.9) to w(t), and we set for simplicity 

(2.25) -q(t) = 

We have 

llw(t)ll < c44q(t)d 
7/4 + c d1/4lAw(t)l, 

2C6a311WII lAwl < 2c4c6a3 dNJ/4IAwI + 2c5c6a6d)/4IAwI2 

<s (v8 + 2C5C6a3d'74)lAwl2 + (C4C6 N 
N ~~~~~p 

and, therefore, 

dljwjj2 + 2(v - 28P - 2c5c6a3d /4)lAwl2 

(2.26) if-gl2 )2 
I f-gl ( C4C6a3 )d -1 

Now, if 

(2.27) v > 2c5c6a3d 74, 

we can choose 

(2.28) 8 = - 2c5c6a3d)/4) 

so that 

(2.29) j= 2(v - 28 -2c5c6 3dl74) > 0. 

Denoting by h = h(t) the right-hand side of (2.26), this inequality becomes 

(2.30) d llwll2 + ;IAw12 < h. 
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(ii) We are going to infer from (2.30) that u(t) is a Cauchy sequence as t -x 0. 
First recall that since the injection of H2(g2) into H1(2) is continuous, there exists 

a constant c7 which depends only on 2 such that 

(2.31) IIT'II < c7CA71A VTp E D(A). 
Actually, the best constant in (2.31) is All/2, where A1 is the first eigenvalue of A1 
(see, for instance, [13]); therefore 

(2.32) d IIWI12 + iAlIIwII2 < h. 

Going back to the definition of f, g and 7, we have 

(2.33) h (t) - If (t) -f (t)I+ (C4C6a3 )2d-/2. Max Iu(xj, t) - U(Xj, t')12 

By the assumptions and the Cauchy property, this expression goes to 0 as t, t' 
converge to infinity. Hence, for every E > 0, there exists to = to(E), such that for t, 

t> to (,E), 

Ih(t)I < E. 
Then, for t > to, and t' = t + s > to, 

(2.34) d IIw(t)112 + FAiIIw(t)112 < E. 

By the Gronwall lemma we obtain 

IIw(0 112 < IIw(to)II2exp(-Ai1(t - to)) + A (1 - exp(-iA1(t - to))) 

or equivalently, 

(2.35) IIu(t) - u(t')112 I IIw(to)II2exp(-rA1(t - to)) 

+ A (1 - exp(-iiA1 ( t - to )) 

for t' > t > to. As t and t' go to infinity, we conclude that 

(2.35) limsupllu(t) - u(t') 112 < , 
t, t' - oo 

Since E > 0 can be chosen arbitrarily small, we conclude that this upper limit is 0, 
the sequence u(t) is a Cauchy one in Vas t - oo; the limit is denoted u,,. 

(iii) Because of (2.19) the family u(t) is bounded in D(A) (i.e. in H2( U)') as 
t - oo. Since ([1], [12]) H7/4(g) is continuously imbedded in W(U) and the injection 
of H2(g) into H7/4(g) is compact, the family u(t) is relatively compact in r(O)'; 
since u(t) converges in V to uO, as t -x o, the convergence is also uniform. It 
follows by (2.22) that 

(2.37) u. (xi) = (i, j = 1, ... , N. 

Passing to the limit as t x in (1.19), one can show in a straightforward manner 
that uo, satisfies (1.20) (with f replaced by f.). We choose a2 > a,, a, given by (2.4) 
where If I is replaced by If. 1 Then by Theorem 2.1, there exists a unique solution uO 
of 
(2.38) PAuoo + Buo = f., uoo E D(A), 

which satisfies (2.37). 
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The proof of Theorem 2.2 is complete with a2 any number less than 

rmn al(ltfj. i^ Q )' 2c5C6,a]3)) 

Remark 2.1. If we assume more regularity on f, and a convergence of f(t) to f., 
stronger than (2.20), one can show that, as t -x oo, u(t) converges to u., in other 
norms (H3, H4, ...). 

Remark 2.2. This result remains valid if the space dimension is n = 3, provided we 
assume that the solution of (1.19) exists for all t > 0 and remains uniformly bounded 
in the Hl-norm. In this case it follows from [7], [8] that IAu(t)I is uniformly bounded 
for t > 8, VS> 0, 

(2.39) Sup IAu(t)I < a5 
t?>6 

with a bound a5 depending on 8, Sup,>0IIu(t)II IfIL (oo;H) and 2. 

3. Large Time Behavior of the Solutions to the N.S.E. We describe in subsection 
3.1 our results concerning the behavior, for t - oo, of the solutions to the N.S.E. In 
subsection 3.2 we recall some theoretical connected results on the asymptotic 
behavior of the solutions to the N.S.E., and we describe how they relate to physical 
problems and to the results established here. 

3.1. The Main Result. We state the main result of this section. 
We assume that n = 2, and that we are given two forces f, g in LI?(0, x; H) such 

that 

(3.1) f (t) -g(t) ---0 in H, as t x-) o. 

We denote by u the solution of (1.19) and by v the solution to the similar problem 

(3.2) dv + PAv + Bv = g, 

(3.3) v(0) = vo, 

vo given in V. 
We are also given a set 'N as described in the introduction. 

THEOREM 3.1. The assumptions are those above. We assume also that, as t - , 

(3.1) u(xi, t) - v(x', t) -O 0, j = 1,... ,N. 

Then there exists a constant a6 which depends only on v, 2, and the norms in 
L?(0, oo; H) off and g such that if 

(3.2) dN < a6 

then, as t -+oo, 

(3.3) u(, t)-v(, t) O 

in the norm of V and in the norm of uniform convergence in S2. 

Proof. Let w = u - v. Subtracting (3.2) from (1.19), we get 

(3.4) dw + vAw + B(u, w) + B(w, v) = f-g. 
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As we did for (2.24), we take the scalar product of this equation with Aw, and we get 

(3.5) 2 dIwII2 + vlAwI2 = -(B(u,w), Aw) -(B(w, v), Aw) +(f- g, Aw) 

< (with (2.13) and (2.19)) 

c c6(jAul + IAvl)llwll Awl + If- gjjAwj 

K c0a711w1 lAwl + If -gl Awl, 
with a7 = a3(IfILo(O,oo;H)9 1" 2) + a3(0g1L(0,00;H), 1)' 

For an arbitrary 8 > 0 we write, as in Theorem 2.2, 

If -gl gAwl < 6vIAwI2 + If - g46 

Also, using inequality (2.9) for w(t), 

IIw(t)0II c4q(t)d 1/4 + c5df/4IAw(t)I, 

where 11(t) = q1(w(t)). Hence, omitting the variable t, 

C60711W11 lAwl < c4c6a7idN l4IAwl + c5c6a7d)fNIAwI2 

< (C5C6a7dlf4 + 6 1)2AwI + (C4COa7)2d /22 

Finally 

wtlWll2 +(2v(1 - 26) - 2C5c6a7d )IAw 
(3.6) If g- 

+ 
(C4C6a7) 2d1/2 

< 46v + 46v ' 

If 

(3.7) v'> c5c617d1/4, 

then we can choose 6 = (v - c5c6a7d1/4 )/4v, so that 

(3.8) v = 2v(1 - 28) - 2c5c6a7d4 > 0. 

Then using (2.31), we arrive at an inequality similar to (2.32) 

(3.9) d IIWI12 + iiAkjjWIj2 < h , 

with 

(3.10) h(t) = If (t) - g(t) 12 + ( C4C6a7 )2 
2d 1/2 

46,' 46v Nq~ 

By assumption h(t) -4 0 as t -x oo. We then infer from (3.9), exactly as in the 

proof of Theorem 2.2, that as t -- oo 

(3.11) IIW(t)ll = IIU(t) - v(0t) ll 0. 

In order to prove that u(., t) - v(., t) converges uniformly in Kl, we observe as in 
the proof of Theorem 2.2, that u(., t) - v(., t) remains bounded in H2(52)' and 
therefore remains in a relatively compact set of W(U2)n. This observation, together 
with (3.11), proves the uniform convergence to 0 of u(., t) - v(., t). 

The theorem is thus proved with a6 any number strictly less than (v/C5 C6a7 )4. Ea 
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Remark 3.1. (i) We can obtain more information on the convergence of u - v to 0, 
if we assume more regularity on f and g and if f(t) - g(t) converges to 0 as t -4 oo 
in a stronger sense. 

(ii) The theorem can be extended to space dimension 3, provided we assume that u 
and v are defined for all t > 0 and their norms in V are uniformly bounded for 
t > 0. 

3.2. Behavior for t -- oo. We recall here a few facts on the large time behavior of 
the solutions to the Navier-Stokes equations. 

For simplicity we assume that f is independent of time, f(t) f E H. When the 
ratio If j/v2 is small, the solution u(t) of (1.19) converges, as t - , to the unique 
stationary solution of N.S.E. When this ratio is large, the behavior of u(t) for t -s cc 
is more complicated. The determination of this behavior is, however, a problem of 
significant practical interest: while the forces are time independent, there is after a 
transient period a kind of "permanent" regime which is observed, and the computa- 
tion of this "permanent" regime is a problem of interest. 

The following has been proved in C. Foias and R. Temam [5].** 

We assume that n = 2, and f E H is independent 
of time. Then there exists a functional invariant 

(3.12) set X c V, such that, as t -x 00, the solution u(.) 
(3.12) of (1.19) converges to X (i.e. the distance in V of 

u(t) to X tends to 0). The set X has a finite 
Hausdorff dimension. 

The definition of a functional invariant set is the following one: let S(t) be the 
mapping from V into itself which associates to every u(O) ? V, the value u(t) at time 
t of the solution of (1.19); X C Vis a functional invariant set if S(t)X = X, V t > 0. 
This implies, in particular, that if u(O) E X, then u(t) belongs to X for all time. This 
set X can be an attracting set; in the simplest cases it reduces to a stationary solution 
{ u. }. It could also be the trajectory (in V) of a time-periodic solution, or it could 
be a more complicated attracting set. 

The fact that X has a finite dimension (in the sense of the Hausdorff measure) 
can be related to the fact that the asymptotic behavior is entirely determined by the 
nodal values on the set &AN (provided (3.2) is satisfied). We conjecture that, as in the 
case of the stationary states, the nodal values uniquely determine the elements of the 
attractor. The present results can also be compared to the fact proved in [4], [6], [3] 
that the asymptotic behavior is entirely determined by that of a finite number of the 
so-called determining modes; cf. [3]. 

4. Time-Periodic Solutions. We are now interested in time-periodic solutions. We 
assume that n = 2. We are given a function -y from R into H which is periodic of 
period T, 

(4.1) y(t + T) = y(t) Vt, 

** Note added in proofs: see also [15]-[181 for improved forms of this result. 
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and is bounded in H 

(4.2) YI[O,T] E L?(0, T; H). 

The corresponding time-periodic solution to the N.S.E. is (in the case of strong 
solution) a function g from R into D(A), which is periodic of period T, 

(4.1) T(t + T) = p(t) Vt, 

with 

(4.2) PI[o,T] E L2(O, T; D(A)) n L`(0, T; V), 

and such that 

(4X3) dp + yAp + Bp = y. dt 

In some cases (cf. G. looss [9]), if the force f converges to a time-periodic limit as 
t - oo, then the solution u of (1.19) may converge to a time-periodic solution of the 

N.S.E. We want to show how this can be detected by discrete observations of u on a 
set gNI 

We assume thatf E LI(O, oo; H) and that, as t -oo, 

(4.4) f(t) - 7(t) -+ 0, 

where y is a function from R into H which satisfies (4.1), (4.2) for some T > 0. 

THEOREM 4.1. We assume that n = 2 and that (4.4) holds. We assume that 

(4.5) dN < a8, 

where a8 is a constant determined below which depends only on v, S, and the norm of f 
in L'(O, x; H). Furthermore we assume that, as t -x oo, andforj = 1,... ,N, 

(4.6) u(x', t) -+ pi(t), 

where pi: RW - R is a continuous periodic function with period T. 
Then the following holds: 

(4.7) u(t) -cp(t) O+ as t -- oo, 

in V and in the uniform convergence norm where g is the unique solution of (4.1)-(4.3) 
which satisfies 

(4.8) p(xj, t) = p1(t), j=1,... N, Vt. 

Proof. (i) The proof begins as in Theorem 2.2: we set v(t) = u(t + s), where 
t' = t + s > t, and we have (2.23), with g(t) = f(t') = f(t - s). Subtracting (2.23) 
from (1.19), we find (2.24). Proceeding exactly as in Theorem 2.2, we deduce from 
(2.24) the inequality (2.30), 

(4.9) ydIIwII + IAwI2 < h, 

which is valid provided (2.27) is satisfied and 8 and v are defined as in (2.28), (2.29). 
The function h is the same as in (2.33). 
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Now if tC - t = s is a multiple of T, t' - t = kT, k E N, then 

If(t + kT) -f(t)I < If(t + kT) - y(t + kT)I + Iy(t) -f(t)I 

since y(t + kT) = y(t), so that this expression converges to 0 as t -s*oc. Similarly 

u(xi, t + kT) - u(xi, t) 0 as t x- o, 

for every j = 1,. . . , N, and hence, in this case, 

h (t ) -0 as t o. 

Therefore for every e > 0 given we can find to = to(E) such that 

(4.10) h(t) < E 

for t >? E, provided t' - t is a multiple of T. 
The computations in Theorem 2.2 lead to the inequality (2.35) which is valid for 

t' > t > to, and t' - t E T - N; we write this inequality with t = T + lT and t' = T 

+ m T, m > 1 > 0,1, m E N, to < T < to + T: 

IIu(T + IT) - u(T + mT)112 

(4.11) < Ilu(to) - u(to +(m - 1)T)112 * exp(-A1l1T) 
+ I. (1 - exp(-;FX1(l + 1)T)). 

Let um be the restriction of u to the interval [to + mT, to + (m + 1)T]. Inequality 
(4.11) together with (2.18) show that u is a Cauchy sequence in W([0, T]; V), as 
t -* oo. Let T denote the limit. It is clear that p(O) = .p(T) and if we extend T by 
periodicity (with period T) on R, we obtain a continuous function from R into V, 
periodic of period T. Also the above convergence can be rephrased as 

(4.12) ,u(t) - T(t) O- in Vas t ---oo. 

Because of (2.19), since jAu(t)j is uniformly bounded for t > to, the function qg is 
actually (essentially) bounded from R into D(A) (P [O, T] E LI(0, T; D(A))). 

(ii) We reinterpret (1.19) in terms of um: 

(4.13) dum (T) + vA (T) + BUm (T) = f (to + T), < < T. dt UnT 

It is straightforward to pass to the limit in (4.13) and to conclude that T satisfies 
(4.3) on (0, T) and therefore on R. The properties (4.1), (4.2), (4.3) are then 
established. 

There remain three points to prove in order to complete the proof of Theorem 4.1: 
-the convergence of u(t) - q(t) to 0 in the uniform convergence norm; but 

u(t) - p(t) remains in a bounded set of D(A) as t -- oo and, as observed before, 
this means that u(t) - p(t) remains in a relatively compact set of '(Q2); since it 
converges to 0 for the L2-norm it must also converge to 0 uniformly. 

-the fact that p(xi, t) = pi(t), which is now a mere consequence of (4.6) and the 
uniform convergence of u(-, t) to p(-, t). 

-the fact that there is a unique solution of (4.1)-(4.3) which satisfies (4.8). 
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If (1 is another one and w = T - 9l, then an equality similar to (2.2) holds: 

dw + PAw + B(p, w) + B(w, ql) = 0. 

From this relation we conclude, since w(xJ, t) = 0, Vj, Vt (compare with (2.26)): 

dt2llwll + 2( - 28 - 2c5c63dN4)IAwI2 A 0 

with 

2&3 > SupIAp(t)I + SupIAT1(t)I. 
teR teR 

If v > 2c5c6&3dN/4, we choose 

18 = 4 (p - 2c5C6A3d7 i) v = 2(v - 28 - 2c5c6&3dN74) > 0. 

We arrive at 

d IIWI12 + vIAwI2 < 0 

and, with (2.32), at 

d 
IIwI12 + iiXiIwII2 < 0. 

This inequality combined with w(O) = w(T), implies w(t) = 0, Vt, and the unique- 
ness follows. 

The theorem is proved with 

a8 < (2c5C6) max(a3,&3) 

Remark 4.1. For a similar result involving the determining modes see [4], [6]. 
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